Chickpea: Nutritional and Economic Importance


Chickpea is a leguminous crop, which offers good nutrition to people across the world. It is common in Afro-Asian countries where there is a favorable tropical and sub-tropical climate. Moreover, Afro-Asian countries have fertile soils that provide robust nutrients to the chickpea. Chickpea ranks second after soybean as the common leguminous crop that people grow and consume across the world. Therefore, its study is significant because chickpea has nutritional and economic importance in the world.

Scientific Name

Fabaceae and Faboideae are family and subfamily names of the chickpea respectively. The generic name of the chickpea is Cicer, while the specific name is arietinum. Therefore, the scientific name of the chickpea is Cicer arietinum.

Brief Overview: Economic Importance; Where grown; Uses

Chickpea has great economic importance because it ranks second after soybean as the common leguminous crop that farmers grow and people consume across the world. Since chickpea is one of the major legumes that people consumed around the world, it generates a lot of income to farmers who are mainly in Afro-Asian countries. Countries such as India, Pakistan, Australia, Turkey, and Burma are major producers of chickpea because they have favorable climate and fertile soils. According to Sharma, Yadav, Singh, and Kumar, chickpea has important nutrition because it has quality proteins and sufficient carbohydrates (805). Hence, due to nutritional significance, chickpea provides nutrition to both humans and livestock. For instance, Indians use chickpea in making Indian cuisines such as hummus, salads, and stew. Moreover, farmers use some of the chickpeas in making animal feed for their livestock.

Focus Areas of this Report

To enhance understanding of the chickpea, the report focuses on pathology, nutrition, and application of biotechnology in chickpea breeding.


Fungal Infections

Chickpea is susceptible to several fungal infections. For example, ascochyta blight is a dominant fungal infection caused by Ascochyta rabiei. In countries such as Western Australia and India, farmers have experienced reduced yields in crop production due to ascochyta blight infections on their crops. According to the Department of Agriculture and Food, the susceptibility of chickpea to ascochyta blight infection varies depending on the crop’s variety, and the level of fungicide protection applied (par. 4). An infected plant has black spots, brown margins, and gray centers on the stems and leaves. After that, the stems break, causing the plant to wilt and eventually die.

Usually, stem damage is the major cause of poor yields experienced by chickpea farmers in most countries. Infections usually take place when seed batches that have the fungus, or small pieces of trash infested with the disease-causing fungi are transferred to an area initially free from the infection. Low level of seed infection can cause a significant outbreak of the disease in a chickpea plantation, and affect the overall crop production.

Bacterial Infection

Chickpea farmers have continually experienced declining yields in the overall productivity of the plant. The declining productivity is attributable to bacterial infections that affect the crops. One of the notable bacteria that infest chickpea is Pseudomonas syringae that causes bacterial blight. When infected the stems look appear soaked and later turn into olive green. The stems eventually develop purple-brown spots and break. Moreover, the leaves become brown or black and take the shape of a fan. They later turn yellow and build up brown papery spots on their lesions. Usually, an infection takes place on flowers and in sepals. The infection kills the flower buds before they open, and thus prevents pollination and reduces crop yield in chickpea (Crop Gene Bank par. 4).

Infestation occurs when fresh uninfected plants mix with diseased plants and trash. This is because the bacterium can survive in the diseased plant for several months. Insects also may spread the infections to new plants during pollination.


Chickpea has several insect pests. Among many pests, pod borer (Helicoverpa armigera), is the dominant one. The pest causes serious crop damage in countries like Australia, the Mediterranean, and Asia. Yadav, Naveen, Redden, Chen, and Sharma, state that, pod borers can cause a loss of over 25-40% on the chickpea farms, a figure that amounts to $325 million per year (2). The pests lay their eggs on the young pods and flowers of the chickpea plant, while the larvae feed on the young leaves; hence, destroy seedlings of the plant. Moreover, the larvae of pod borers attack chickpea by boring holes on flower buds, pods, and mature seeds. Therefore, the overall productivity of the chickpeas is affected.

Effect on Production or Yield

Fungi, bacteria, and pests have detrimental effects on chickpea plants. Across the world, farmers incur huge losses every year because of the damages caused by fungi, bacteria, and pests. In the Australian, Indian, and Mediterranean regions, fungal diseases such as ascochyta blight adversely affect the productivity of the plant. Department of Agriculture and Food, pests, and diseases cause significant reduction in chickpea yields in many countries around the Mediterranean region (par. 1). On the other hand, bacterial infections are also destructive as farmers who plant chickpea incur great losses. For example, during winter, farmers in southern France, South Africa, and New Zealand, experience serious infections of bacterial blight, which hurts the yield and productivity of chickpea. Furthermore, pests such as pod borers destroy chickpeas. Therefore, fungi, bacteria, and pests affect the yield of chickpeas and reduce their overall productivity in many countries around the world.

Ways of Management

In the management of fungal and bacterial diseases of chickpea, infected crops should be isolated from the new plants because isolation reduces the introduction of the disease on the uninfected seeds. Moreover, farmers can also employ extensive crop rotation so that they can minimize the spread of infections within a single paddock. Also, farmers can use fungicides and bactericides at the initial stages of the crop to reduce the risk associated with early infections. To control pests, farmers can employ several strategies that are available. According to Acharjee and Sarmah, these strategies include rotational planting, spacing, time of sowing, inter cropping, fertilizer application, strip-cropping, wide hybridization, and germ-plasma screening (par. 4). Farmers can use these strategies to reduce the effects of fungal and bacterial diseases and in the control of pests.


Human Nutrition

Chickpea is an important leguminous crop because it provides nutrition to significant number of people in different parts of the world. Like other legumes, chickpea provides important nutrition to humans. Sharma, Sanjeev, Yadav, Singh, and Kumar state that chickpea provides quality proteins and good starch, which form part of human nutrition (808). Given chickpea is among the dominant legumes; it helps in meeting the protein and starch needs that humans require in their nutrition. According to Jukanti, Gaur, Gowda, and Chibbar, “in the semi-arid tropics, chickpea is an important component of the diets of those individuals who cannot afford animal proteins or those who are vegetarian by choice” (11). Thus, chickpea offers cheap and quality proteins to the poor and vegetarians. Additionally, the starch provides carbohydrates and roughages that form a vital component of human nutrition.

Importance Worldwide

Across the world, chickpea is an important leguminous crop not only in terms of nutrition but also economically. Countries in the Middle East, North Africa, southern Europe, Australia, and Asia rely on the chickpea as a source of food and commercial product. Jukanti, Gaur, Gowda, and Chibbar report that “during 2006 and 2009, the global chickpea production area was about 11.3 million hectares, with a production of 9.6 million metric tons and an average yield of 849 kg per hectare” (11). Out of this production, India alone produces about 66% of the world’s production. Thus, India is the major exporter of chickpea in the world. Farmers in India and other countries that grow chickpea earn money when they export their produce to different importers in various countries. Therefore, due to its nutritional and economic importance, Food and Agricultural Organization regards chickpea as the second dominant legume after soybean, which is grown and consumed across the world.

Nutrients that It Provides

Chickpea provides important nutrients such as proteins, carbohydrates, vitamins, and minerals. Chickpea has quality proteins that can supplement essential amino acids such as isoleucine, leucine, and tryptophan. Sharma, Yadav, Singh, and Kumar state that the protein content of chickpea is about 18-31% depending on the variety of the chickpea (805). While kabuli variety of chickpea has the highest content of protein, the desi variety of chickpea has the lowest content of protein. In addition to proteins, chickpea has carbohydrates in the form of fats, starch, and fibers. The fats that are present in chickpea are unsaturated and have low levels of cholesterol, and thus good for human consumption (Sharma, Sanjeev, Yadav, Singh, and Kumar 806).

Moreover, starch and fibers provide energy and roughages, respectively. Riboflavin, thiamin, pyridoxine, and niacin are some of the vitamins that are present in chickpea. The presence of these vitamins makes chickpea a nutritious crop. Chickpea also has minerals such as iron, copper, zinc, and magnesium, which are essential in the human body.

Biotech Approaches

To improve the nutritional value of chickpea, biotechnologists have employed several approaches. Hybridization is one of the methods that biotechnologists have used in the breeding of chickpea to improve its productivity and nutritional value. In a hybridization approach, biotechnologists employ single, triple, and multiple crosses when improving the genome of the chickpea. The combination of the crosses through backcross enables biotechnologists to insert new traits into native breeds or other hybrids. In addition to hybridization approach, genomics-assisted breeding is an underway approach that aims at enhancing the traits of chickpea. Gaur, Jukanti, and Varshney state that application of genomic tools in the breeding of chickpea has enhanced its productivity and nutritional value (212). Thus, genomic-assisted breeding is a breeding approach that has a great potential of improving nutritional value, since it entails the incorporation of other genes into the chickpea.


Biotechnology Methods

Biotechnologists have devised numerous ways of ensuring that chickpea has increased resistance to pests and diseases. Helicoverpa armigera (pod borer) is a common pest that severely affects chickpea, and thus reduces yields significantly. To prevent the pest, biotechnologists have developed genetically modified chickpea that is resistant to the pod borer. According to Acharjee and Sarmah, biotechnologists have managed to insert a gene of Bacillus thuringesis (Bt gene), which confers insecticidal property to the chickpea, and thus enables it to resist the attack of pod borers (5709). Moreover, biotechnologists have developed chickpea that is resistant to fungal blight.

The use of hybridization is another way of improving yields and productivity of chickpea. “Conventional breeding approaches have given over 350 improved cultivars, which have contributed to improved productivity, reduced fluctuations in yield, and enhanced adoption of chickpea to new niches” (Gaur, Jukanti, and Varshney 200). This means that hybridization by crossing the native, and the hybrid varieties have enhanced traits of chickpea.

Importance of Biotechnology

Application of biotechnology in the development of chickpea hybrids that are resistant to pests and diseases has reduced the cost of using pesticides, fungicides, and bactericides. Consequently, the resistance of chickpea to pests and diseases leads to increased yields. Gaur, Jukanti, and Varshney assert that the development of hybrids that have enhanced the productivity of chickpea because biotechnology improves the traits of the wild chickpea (208). The wild varieties of chickpea are not only susceptible to pests and diseases, but they are also unproductive. Thus, the use of biotechnology is important because it increases the resistance of chickpea to pests and diseases, and improves yields.


Chickpea is a leguminous plant that is important because it provides quality proteins and sufficient carbohydrates that humans require. Moreover, chickpea has great economic importance because countries like India, Australia, Pakistan, and Ethiopia earn foreign exchange. In farming, chickpea is susceptible to fungal, and bacterial infections as well as pest infestation. Given its nutritional and economic importance, biotechnologists have generated genetically modified chickpea that does not only have improved nutritional value and productivity but also has enhanced resistance to diseases. In this view, the application of biotechnology tools in the development of chickpea hybrid, which is resistant to diseases and pests, is an essential practice of improving its productivity.

Annotated bibliography

Acharjee, Sumita, and Bidyut Sarmah. “Transgenic Bacillus thuringesis (Bt) chickpea: India’s Most Wanted Genetically Modified (GM) pulse Crop.” African Journal of Biotechnology 12.39 (2013): 5709-5713. Web.

The article asserts that production of chickpea is declining with time because of the increase in the prevalence of pests and diseases. To overcome the challenge of pests and diseases, the article explains the importance of Bacillus thuringesis gene (Bt gene) in prevention pod borers. Bt gene confers chickpea with the resistance to pod borer; hence, prevent the pest from investing in chickpea plantation. Through biotechnology, biotechnologists insert Bt gene into chickpea so that it can confer resistance to pod borers.

Crop Gene Bank. Bacteria: Chickpea. System-wide Genetic Resources Programme. 2013. Web.

The article focuses on the impacts of bacterial infections on the chickpea. It asserts that bacterial infections reduce production of chickpea in some countries that are within tropical regions. Therefore, it assesses the effect of bacterial infections on chickpeas and gives some of the strategies that farmers can use to minimize or prevent bacterial diseases. The article also presents the symptoms, effects, and some of the control measures can that farmers can employ to deal with the bacterial infection. To prevent these infections, the article suggests application of biotechnology by modifying genes to confer resistance to diseases.

Department of Agriculture and Food. Fungal and Bacterial Diseases of Chickpea. Government of Western Australia. 2013. Web.

The article is relevant to the study as it examines the fungal and bacterial diseases that affect chickpeas. Some of the fungal infections discussed include ascochyta blight and botrytis grey mould. These fungal and bacterial diseases make farmers to incur huge losses due to increased cost of production and reduction of yields. The article also presents some of the strategies that farmers can use to manage or prevent these infections on their chickpeas.

Gaur, Pooran, Aravind Jukanti, and Rajeev Varshney. “Impact of Genomic Technologies on Chickpea Breeding Strategies.” Agronomy 2.1 (2012): 199-221. Print.

In the article, the authors argue that the application of technology in breeding of chickpea is crucial to enhance yields and prevent pests and diseases. The article identifies hybridization and genomic-assisted breeding as biotechnologies that are effective in improving traits of chickpea. In this view, the article argues that genomic tools are essential to overcome challenges posed by pests and diseases in chickpea farming.

Jukanti, Aravind, Pooran Gaur, Laxmipathi Gowda, and Ravindra Chibbar. “Nutritional Quality and Health Benefits of Chickpea (Cicer arietinum).” British Journal of Nutrition 108.1 (2012): 11-26. Print.

In the article, the authors argue that chickpea has important nutrients that are good for human health and prevention of diseases. According to this article, chickpea has proteins, mineral, vitamins, and carbohydrates, which are nutritional elements. Owing to its nutritional importance, the article asserts that the combination of chickpea with cereals and other legumes provides enhanced nutritional benefits. Thus, the article suggests that chickpea has potential health benefits, which help in the prevention of diseases such diabetes, cardiovascular disorders, cancers, and digestion problems.

Sharma, Sanjeev, Naveen Yadav, Abhishek Singh, and Rajesh Kumar. “Nutritional and antinutritional profile of new developed chickpea (Cicer arietinum L) varieties.” International Food Research Journal 20.2 (2013): 805-810. Print.

The authors of the article examine nutritional and antinutritional factors that are present in the chickpea. In the article, they discuss the nutritional importance of the chickpea and factors that affect its nutritional elements. Specifically, the article states that chickpea has nutritional elements such proteins, carbohydrates, minerals, and vitamins, which are important for human health. However, the article also states that antinutritional factors such as saponins, tannins, alkaloids, lectins, and phenolics are present in chickpea. Thus, the article highlights the presence of nutritional and antinutritional factors in chickpea.

Yadav, Naveen, Robert Redden, Weidong Chen, and Sanjeev Sharma. Chickpea Breeding and Management. 2008. Web.

The article outlines the initial evolution stages of chickpeas and the early domestication areas. Domestication of the wild chickpea through breeding has enhanced traits of chickpea and increased its productivity. Hence, the article states that effective breeding and management practices are essential in improving productivity of chickpea. It also states that chickpea has medicinal importance in addition to its nutritional value. Thus, the article underscores the essence breeding and management as ways of improving productivity in chickpea. Ultimately, the article highlights geographical distribution, species, varieties, and the prospects accrued from chickpea.